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Heart failure is one of the leading medical problems in modern medicine
regardless of whether we view it from the clinical, prognostic,
epidemiological or socio-economic perspective. While current treatment
strategies are targeting exclusively the neurohormonal activation, our
pathophysiologic understanding has advanced significantly towards an
increasingly complex picture including metabolic, inflammatory, and
hormonal pathways.

Recently, an increasing interest in uric acid (UA) has emerged, as
a number of studies have shown that hyperuricaemia is a constant feature
of metabolic imbalance within heart failure pathophysiology. In contrast
to many other novel biomarkers, UA is an easily measured parameter
with wide availability at low costs. The former perception of UA as the
inert end product of the purin degradation has changed as recent evidence
suggests a significant role of the purine degradation pathway within
metabolic and immunologic regulation. In this issue, Patel and Arora
provide a broad overview of current knowledge on UA and the xanthine
oxidase metabolic pathway [1]. In combining the findings from pre-clinical
and clinical studies the authors present a comprehensive picture of the
diagnostic and  therapeutic implications regarding UA metabolism in the
context of CHF.

In the ongoing discussion on hyperuricaemia in CHF several questions
remain controversial. Fundamentally, the nature of UA as a good or bad
guy in the field is still on debate. On one side, the enzyme xanthine oxidase
(XO) has been established as a major source of oxygen radical
accumulation and hence originator of a wealth of detrimental effect in
acute and chronic disease conditions. In fact, XO was first documented
biological generator of reactive oxygen species (ROS) [2]. On the other
hand, UA accounts for much of the protective antioxidant capacity in
plasma [3]. So a chicken and egg conundrum emerges if one looks at these
two factors (i.e. XO and UA) separately.
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While several studies observed that exogenous
administration of UA exerts protective effects
against oxidative damage and endothelial
dysfunction, it should be noted that in CHF
hyperuricemia results mainly from up regulated XO
activity [4] with the inevitable effect of increased
ROS generation. Accordingly, inhibition of XO and
hence preventing ROS accumulation yielded multiple
protective effects on functional and metabolic
capacity in CHF [5]. The specific organ distribution
of XO with the highest activity (apart from the
lactating mammary glands) in the capillary
endothelial cells [6] of intestine and the liver [7]
suggests a specific function in the vascular system.
Given the toxic effect of ROS, a role as defence
mechanism seems plausible such as to protect the
inner surface (i.e. the barrier between intestinal
lumen and the body tissues) from bacterial intrusion
[8]. The protective antioxidant capacity of UA may
then act as a negative feedback principle to the ROS
accumulation by XO. As seen in other physiologic
response mechanisms, the well-tuned short-term
adaptive response may fail in long-term activation
such as in chronic disease leading to maladaptive
processes and eventually harmful effects.

A second currently unresolved question
addresses the role of UA itself as an active player
or a mere marker of XO activity. The demonstrated
quality of hyperuricaemia as a strong and
independent predictor of symptomatic status and
prognosis in CHF [9] ensures the characteristic of
UA as disease marker. This does, however, not
presume a causal contribution of UA. Data on the
causal involvement of UA to CHF pathophysiology
are inconclusive: UA has recently been observed as
an endogenous danger signal that mediates
immune response following cell injury [10]. The
immune activation capacity of UA is supported by
the finding of increased production of tumour
necrosis factor-a upon endotoxin challenge, after
infusion of UA, in mice [11]. On the other hand,
recent studies in humans have shown that lowering
UA without blocking XO activity (i.e. by stimulated
increased UA excretion or further degradation) did
not result in the beneficial effect seen with direct
XO inhibition [12]. Further studies are required to
fully uncover the role of UA in this context.

A third aspect and probably most interesting is
the question as to the role of UA as potential novel
target for therapy. A substantial body of evidence
has been accumulated to support this intriguing
therapeutic concept. A range of surrogate markers
of myocardial and peripheral functional and
metabolic capacity has shown to improve after XO
inhibition in both animal models and patients [5].
In contrast, however, in a recent randomized
controlled trial using oxypurinol for XO inhibition in
CHF (OPT-CHF) no beneficial effect on CHF disease

severity or survival could be observed [13]. While
this disappointing result puts the overall therapeutic
concept into question, some aspects should be
discussed. In the OPT-CHF study, UA was not part
of the inclusion criteria, which may contribute to
the lack of effect. Notably, pilot studies on XO
inhibition repeatedly failed in those patients with
normal UA levels and it has been suggested that
only patients with high UA levels – demonstrating
up-regulated XO activity – may be suitable for this
therapy [14]. Interestingly, in the subgroup with
elevated UA levels, the OPT-CHF study showed the
anticipated results, however, lacking the power and
prospective character of the overall study analysis.

The work by Patel and Arora provides a detailed
overview of the currently available data and
conceptual understanding. Several questions are,
however, still under discussion and further studies
should be encouraged to advance our understanding
of the XO metabolic pathway.

The metabolic facet within CHF pathophysiology
is increasingly appreciated and the XO inhibition as
novel metabolic approach in CHF therapy is still
a promising target.
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